263 research outputs found

    Naive Bayes and Exemplar-Based approaches to Word Sense Disambiguation Revisited

    Full text link
    This paper describes an experimental comparison between two standard supervised learning methods, namely Naive Bayes and Exemplar-based classification, on the Word Sense Disambiguation (WSD) problem. The aim of the work is twofold. Firstly, it attempts to contribute to clarify some confusing information about the comparison between both methods appearing in the related literature. In doing so, several directions have been explored, including: testing several modifications of the basic learning algorithms and varying the feature space. Secondly, an improvement of both algorithms is proposed, in order to deal with large attribute sets. This modification, which basically consists in using only the positive information appearing in the examples, allows to improve greatly the efficiency of the methods, with no loss in accuracy. The experiments have been performed on the largest sense-tagged corpus available containing the most frequent and ambiguous English words. Results show that the Exemplar-based approach to WSD is generally superior to the Bayesian approach, especially when a specific metric for dealing with symbolic attributes is used.Comment: 5 page

    Using WordNet for Building WordNets

    Full text link
    This paper summarises a set of methodologies and techniques for the fast construction of multilingual WordNets. The English WordNet is used in this approach as a backbone for Catalan and Spanish WordNets and as a lexical knowledge resource for several subtasks.Comment: 8 pages, postscript file. In workshop on Usage of WordNet in NL

    Boosting Applied to Word Sense Disambiguation

    Get PDF
    In this paper Schapire and Singer's AdaBoost.MH boosting algorithm is applied to the Word Sense Disambiguation (WSD) problem. Initial experiments on a set of 15 selected polysemous words show that the boosting approach surpasses Naive Bayes and Exemplar-based approaches, which represent state-of-the-art accuracy on supervised WSD. In order to make boosting practical for a real learning domain of thousands of words, several ways of accelerating the algorithm by reducing the feature space are studied. The best variant, which we call LazyBoosting, is tested on the largest sense-tagged corpus available containing 192,800 examples of the 191 most frequent and ambiguous English words. Again, boosting compares favourably to the other benchmark algorithms.Comment: 12 page
    • …
    corecore